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Abstract

This paper presents an exact solution for the problem of an elliptic hole or a crack in a thermopiezoelectric solid.
First, based on the extended version of Eshelby—Stroh’s formulation, the generalized 2D problems of an elliptical hole
in a thermopiezoelectric medium subject to uniform heat flow and mechanical-electrical loads at infinity are studied
according to exact boundary conditions at the rim of the hole. The complex potentials in the medium and the electric
field inside the hole are obtained in closed form, respectively. Then, when the hole degenerates into a crack, the explicit
solutions for the field intensity factors near the crack tip and the electric field inside the crack are presented. It is shown
that the singularities of all the field are dependent on the material constants, the applied heat load and mechanical loads
at infinity, but not on the applied electric loads. It is also found that the electric field inside the crack is linearly variable,
which is different from the result based on the impermeable crack model. © 2002 Elsevier Science Ltd. All rights re-
served.

Keywords: Piezoelectric solid; Hole; Crack; Thermal analysis; Exact solution

1. Introduction

During the past few decades, widespread attention has been given to the thermal stress problems in an
elastic medium with inclusions, holes or cracks. A considerable work on this subject can be found in the
literature. For example, one can cite the work of Florence and Goodier (1960), Sih (1962), Lee and Jang
(1993), Zhang and Hasebe (1993), Chao and Shen (1993, 1997), Kattis and Patia (1994), and Kaminskii and
Flegantov (1994) for the cases of isotropic media, and also those of Sturla and Barber (1988), Hwu (1990,
1992), Tarn and Wang (1993), Chao and Chang (1994), Lin et al. (1997) and Chao and Shen (1998) for the
cases of anisotropic materials. In recent years, the thermo-electric-mechanical coupling problem in ther-
mopiezoelectric media with holes or cracks has also received much attention with increasingly wide ap-
plication of thermopiezoelectric materials in the engineering. In contrast, however, relatively little work has
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been done due to the mathematical complexity. Recently, several solutions of thermopiezoelectric media
with cracks have been given by Shang et al. (1996) for the 3D problem of a penny-shaped crack, and also by
Yu and Qin (1996), Qin and Mai (1997), Yang et al. (1997), Shen and Kuang (1998) and Qin et al. (1999)
within the framework of 2D analysis. But it should be seen that all the above analyses are based on an
impermeable boundary assumption, i.e. the electric field inside cracks is assumed to be zero. More and
more findings show the assumption may lead to erroneous results for the crack problem in piezoelectric
media (see, e.g. the work of McMeeking (1989), Pak and Tobin (1993), Dunn (1994), Sosa and Khutor-
yansky (1996), Kogan et al. (1996), Zhang et al., 1998 and Gao and Fan (1998, 1999)). More recently, Gao
and Wang (2001) studied the 2D problem of thermopiezoelectric materials with cracks by means of the
Parton assumption, i.e. the crack is considered as a thin slit and thus the normal components of electric
displacement and the tangential component of electric field are assumed to be continuous across the slit
(Parton, 1976). However, the correctness of Gao and Wang’s results (2001) remain to be proved. Thus, it is
very necessary to give an exact and explicit solution for a crack in thermopiezoelectric media. It is well
known that an elliptic hole problem is the basis of the corresponding crack problem in elastic analysis.
Although the exact solution of a crack in a linear piezoelectric solid has been obtained by Gao and Fan
(1999) and Gao (2000) who began with an elliptical hole, to the authors’ knowledge, the similar success has
yet not been reached for the crack problem in thermopiezoelectric solid.

In the present work, we treat the generalized 2D problem of an elliptic hole or a crack in an infinite
thermopiezoelectric medium subjected to uniform heat flow together with uniform mechanical-electric loads
at infinity. The analysis is based on the Stroh formalism and the exact boundary conditions at the rim of the
hole. The whole contents consist of five sections. Following this brief introduction, basic equations con-
cerning the thermopiezoelectricity are summarized in Section 2. Then, both the analytical solutions and
numerical results of the elliptic hole are presented in Section 3, respectively. In Section 4 given are the exact
solutions of a crack, including the complex potential in the medium, the field intensity factor near the crack
tips and the electric field inside the crack. Finally, the conclusions on the current work are drawn in Section 5.

2. Basic equations

In a fixed rectangular coordinate system x; (j = 1,2, 3), denoting by u, ¢, o, D, E, T and ¢ the dis-
placements, electric potential, stress, electric displacement, electric field, temperature and heat flux, re-
spectively, the complete set of governing equations for piezothermoelastic problem can be expressed, in the
stationary case without body force, extrinsic bulk charge and heat source, as (Mindlin, 1974; Wu, 1984;
Chandrasekharaiah, 1988; Shen and Kuang, 1998)

Gij = CijiVu — €ijsEs — ﬁ;,-T (1)
D; = exEy + en), + 1T (2)
qi = =T (3)
vy = 5wy + ) (4)
Ei=—-¢,; (5)
g, =0 (6)
D;; =0 (7)

g =0 (8)
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where
Cijkl = Cjiki = Cijik = Cklijy  €kij = Ckji, €ij = &jis ﬁij = ﬁjia )»ij = Aji

In the above equations, repeated indices imply summation, a comma stands for differentiation, and c;j,
exij» &ij» Biy» Aij» T are the elasticity constants, piezoelectricity constants, dielectric constants, stress-tem-
perature coeflicients, coefficients of heat conduction and pyroelectric coefficients, respectively.

Substituting (1), (2) and (3) together with (4) and (5) into (6), (7) and (8), respectively, one has

(Cijrsur + es_ﬁﬁﬁ),si —B;Ti=0 ©)
( — &isP + eir.vur)ys,' + TiT:i =0 (10)
2Ty =0 (11)

Consider the generalized 2D problems of thermopiezoelectricity with geometry and loading independent
of x3. In this case, the governing Eq. (11) becomes

o’T T T
l]]az—x%+22]2m+22262—x§: 0 (12)
The general solution of (12) is
T =2Re[d(z)], z =xi+px (13)

where Re means taking the real part; g is a complex function to be determined; the prime (') indicates
differentiation with respect to its argument, and g, is the heat eigenvalue which is determined from

/lzz,utz +20pu,+ 211 =0 (14)
(14) produces the solution of p, with positive imaginary part as

= (= A2 +1iK;) /A (15)

k= (i — i5)" i — 2 >0 (16)
where i = v/—1.

Inserting (13) into (3), and then using (14)—(16) leads to

q1 = 2Re [iu,;c,g”(z,)} (17)

¢ = —2Re [iK,g”(z,)] (18)
On the other hand, the resultant heat flow Q can be expressed as

0~ [ads (19)

where s is the arc-length, ¢, stands for the heat flux in the direction normal to s.
Noting

C],,dS =1q1 d)C2 —Q2dX1 (20)
one has, by substituting (20) together with (17) and (18) into (19), that
0 =2Re [i;ctg'(z,)} (21)
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From (19)—(21) one obtains
2Relig'(z/)] = Kl, /%dxz — g2dx, (22)
or
., 1
2Re(ig'(z)] = ” /qn(s) ds (23)

Introduce two function vectors:

u= (ulau27u3a (P)t7 (p = ((pla ¢27¢37 ¢4)t

where the superscript ¢ represents the transpose; u and ¢ are generalized displacement function and gen-
eralized stress function, respectively, which are related to the field variables by

Oj1 = _(:bj‘Za Op = ¢j,1 (/ = 1,2, 3) (24)

Dy = —d4y, Dy=dyy, Ei=—us, Ey=—uy (25)
Then, the general solution of u and ¢ can be written as

u=u,+u, (26)

b=y + ¢, (27)

where u, and ¢, are the particular solution of (9) and (10), while u, and ¢, the homogeneous solutions of (9)
and (10) corresponding to the isothermal case, here u, and ¢, can be expressed as (Suo et al., 1992; Chung
and Ting, 1996)

w, = Af(z,) + Af(z,) (28)

¢, = Bf(z.) + BI(z,) (29)
with
f(z.) =[h (21),fé(zz),ﬁ(23),f4(z4)][, Zy=x1+px2 (a=1~4)

In (28) and (29), A and B are two 4 x 4 matrices, f,(z,) are complex potentials to be found, and y, are the
complex eigenvalues with positive imaginary parts and can be obtained from the equation

ID.(1)[ =0 (30)
where

D.(1) =S+ u(R+R') + ’'W
S — {Sto €1 ]’ R — {Rto €] ]7 W — |:‘§70 €2 }
€ —éu €y, —én €n —ém

(So)y = citer, (Ro)y = cieas (Wo)y = cina, (i,k=1,2,3)

and

ex = (enr, enrsenr)’, (i,k=1,2)

In this paper we assume that p, are distinct. For this case, A and B are nonsingular, and there is the
following orthogonality relation (Chung and Ting, 1996):
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B A'l[A A] [I 0
[E’ AfHB E]_[O 1} (31)
where I is the 4 x 4 unit matrix.

On the other hand, the particular solutions of (9) and (10) are (Shen and Kuang, 1998)
u, = 2Refcg(z))] (32)

¢, = 2Reldg(z)] (33)
where ¢ and d are the heat eigenvectors, which can be determined from the following equations

D*(,ut)c =B + wp,

d= (R + W) - f,
B = (ﬁllvﬁZlvﬁSlaTl)[

By = (B12s By By TZ)[
Substituting (28), (29), (32) and (33) into (26) and (27) gives the final solution of u and ¢ such that
u = 2Re[Af(z.) + cg(z,)] (34)

¢ = 2Re[Bf(z.) + dg(z,)] (35)

Assuming that the considered problem satisfies such a condition that for an arbitrary point on the
boundary, the corresponding points z, and z, (« = 1-4) can be translated into an identical point, e.g. on the
x1-axis or an unit circle, and as a result the boundary equation can be reduced to that containing one
variable. Only under this condition, the one-complex-variable approach introduced by Suo (1990) can be
used to simplified analysis when one considers the boundary conditions (Ting, 2000; Gao, 2001). In the
present work these one-complex variable equations can be summarized as

T = 2Re[¢(2)] (36)
¢ = 2Reip kg (2)] (37)
¢ = —2Relixg"(2)] (38)
0= 2Refig'(2)] = [ aidn: — gz (39)
u = 2Re[Af(z) + cg(2)] (40)
¢ = 2Re[Bf(z) + dg(z)] (41)

If the traction, and the normal component of electric displacement D, are given on the boundary, the
corresponding boundary condition can be expressed as

JRe[B(2) + dg ()] = / tds, t=[n,b,05,D,] (42)

5

where ¢; (j = 1,2, 3) is the component of surface traction vector.
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After the solutions of g(z) and f(z) are obtained from Egs. (36)—(42), a replacement of z,, z|, z, z; Or z4
should be made for each component function to calculate field quantities from (24) and (25).

3. The solution to an elliptic hole

Consider a generalized 2D problem of a thermopiezoelectric medium containing an elliptic hole L, which
is described by the equation: (x}/a®) + (x3/b*) = 1, as shown in Fig. 1. The uniform mechanical-electric
loads T3 = (053,035,055, D5)" and II¥ = (a5, 0%, 073, D) together with uniform heat flow q* =
(ql“’, qg")t are simultaneously applied at infinity. In addition, the hole is assumed to be free of force, external
charge and heat flow, but filled with air or vacuum.

3.1. The electric field inside the hole

Let the electric potential ¢,(z) inside the hole be
Pi(2) = 2Ref)(2) (43)

where f,(z) is an analytic function. Then inside L, the electric field components (EY, E9) and electric dis-
placement components (D?,Dg) can be expressed as:

E) = —2ReF(z), E)=_2ImF(z) (44)

D) = —2¢ReF(z), D)= 2¢ImF(z) (45)

where Im indicates the imaginary part; ¢ is the dielectric constant of air or vacuum; F;(z) = df;,(z)/dz.
Using Gauss’ law, one has

Inserting (45) into the right side of (46) gives

/ D’ ds = 2¢9Imf;(z) (47)

s

Noting that the exterior of the ellipse L can be mapped onto the exterior of the unit circle y in the {-plane
by

v

Fig. 1. An elliptical hole in a thermopiezoelectric solid.
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2(0) = Ro({+mol™"), Ry=(a+b)/2, my=(a—b)/(a+h)

then f;(z) can be expressed inside L in the form of the Faber series as (Cutis, 1971; Kosmodamianskii and
Chemie, 1981)

L0 = "a (0 +myr) (48)
n=1
where £,(0) = f[2(0)]; a° are complex coefficients to be determined.
3.2. The temperature field in the medium

From (39), the insulated boundary condition at the rim of the hole requires
2Relig'(z)] =0 (49)
For the present problem, g'(z) takes the form of

g(z) =z +g(2) (50)

where g;(z) is a holomorphic function outside the hole, and g,(o0) = " here ¢!" is a constant corre-

sponding to an uniform temperature field and thus can be neglected without loss in generality; cfz) is an-
other constant to be determined.
Substituting (50) into (37) and (38), and then taking the limiting z — oo yields

2Re[ipgx,c?] = ¢f° (51)
2Relir,c?] = —¢5° (52)

(51) and (52) give
@ =N TR 53
ire, (o — 1) &3

In fact, c§2>z in (50) stands for the complex potential of an infinite medium without hole subjected to the
given uniform heat flow at infinity. Thus, one has from (39) that

. 1
Refic?s] = L / (g7 dx, — g dv) = g, (54)
t
where
1
qs = — (CITOX2 - q?xl) (55)
Kt
Substituting (50) into (49) and then using (54) results in
2Religy(2)] = —¢; (56)
Introduce the following mapping function z,({):
Zoc(é/) =R, (C + mxcil) (57)
with

R, = (a - lnuab)/zﬁ my = (a + l.uacb)/(a - l:uatb)’ (OC =1 14)

which transforms the exterior of the ellipse L, in the z,-plane into the exterior of a unit circle y in {-plane.
Then, (56) can be rewritten as
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2Reigy(5)] = —a. (58)
Noting that on the hole, { = ¢ = € and
1
xlaCOSQg(EﬁLG) (59)
. b1
xzzbsm9:1§<g—a> (60)
one obtains by using (58) and (55), (59) and (60) that
2Re|igh ()] = —4.(0) (61)
where
()__L 0 +l _|_b°° _l (62)
qs\0) = 2x, ag, \ o p 10q," { 0 o

Multiplying both sides of (61) by f) dg/(o — (), and then calculating the Cauchy integration leads to
(Muskhelishvili, 1975)

o 1 o i ocolel .
ig,(0) = T [aq2 — ibgq5 }C 4 1051) (63)
K:
Using (63) and (50), the final form of g’(z) can be expressed as
1 . _
gz) = c£2)z + C;U) + i [aq(z’o — lbq?c]é' 1(z) (64)
t

The integration of (64) with respect to z gives

g(z) =12 + Nz + 9, Inl(2) + 7,0 (2) (65)
where
R o . . 1
= 2i;t<, [agy” —ibgi], 7 =3mmn (66)

3.3. The electro-elastic field in the medium

Observing (65), the complex potential in the medium can be expressed as
f(z) =12 + ez + 8In{(z2) + fo(2) (67)

where fy(z) is a holomorphic function outside the hole; ¢/?, ¢! and 6 are three constant vectors to be found.
To find o, one has to consider the force equilibrium condition and the conditions of single-valued dis-
placement and electric potential. These conditions require

%u,ldzzo, ?(d),]dz:() (68)
Iy Iy

where I', stands for a clockwise closed-contour encircling the hole, and

u; = 2Re[Af(z) + cg'(2)] (69)
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¢, = 2Re[Bf (2) + dg/(z)} (70)
Substituting (69) and (70) into (68), and then using the residue theorem produces

[Ad+ ¢y ] — [Ad+ ey ] =0 (71)

[B6 +dy,] — [Bo+dy,] =0 (72)

(71) and (72) show that Ad + ¢y, and BJ + dy, are real, respectively.
Using (31) one can obtain from (71) and (72) that

5:Bt(m_c“/1)+Al(d71_d“/1) (73)

On the other hand, substituting (65) and (67) into (69) and (70), and then taking the limiting z — oo (in
this case, { — o0) leads to

2Re[(Ac? + ecl?)z] + 2Re[Ac + ecV] = u (74)

2Re[(Be® + dci?)z] + 2Re[Be!) +dclV] = ¢ (75)
where

OF =115, wy = (i, & + oF, 265, — B7)' (76)

In (76), &, €5, €75 and E° are the components of strain and electric field at infinity, respectively; wf°
denotes the rotation at infinity.
Considering the fact that both the stresses and strains are bounded at infinity, (74) and (75) gives

2Re[Ac + ecfV] = uy (77)

2Re[Bc) +dc{V] = ¢ (78)
and

2Re[(Ac? +ec?)z] =0 (79)

2Re[(Be® +dcl?)z] =0 (80)

Using (31) one obtains from (77) and (78) that
c(l) — Btujo + At¢olo _ Bt [cctﬂ) +C_Ct(2)} _ At |:dC§2) +d70t(2>:| (81)

On the other hand, (79) and (80) imply that the complex functions Ac? + cc§2> zand |Bc® + dcﬁ2> z,
which are corresponding to the uniform heat flow in an infinite medium without holes, will not produce
stress and strain, and thus can be cut out in the boundary equations. Keeping in mind that, (65) and (67)
can be rewritten as

g(z2) =cVz+9,Inl(z) + 7, (2) (82)

f(z) = ¢Vz + 5In{(z) +fo(2) (83)
Inserting (82) and (83) into (40) and (41) yields

¢ = 2Re[(Bc") + dc!V)z] + 2Re[(BS + dy;) In {] + 2Re[Bfy(z) + dy,{ 7] (84)

u = 2Re[(Ac) + ecV)z] + 2Re[(AS + ¢y;) In (] + 2Re[Afo(z) + ¢y, 7] (85)
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Obviously the first terms on the right of (84) and (85) stand for the complex potentials of an infinite
medium without hole subjected to the uniform mechanical-electric loads at infinity. In this case, the
electric-elastic fields in the medium are the same everywhere as those applied at infinity. This implies from
(24) and (25) that the following identities hold

2Re[(Be') + dcV)z] = ¢ (86)

2Re[(Ac" + ecV)z] =u™ (87)
where

¢ = 117°x; — [77x; (88)

u® = &%x + &°x (89)

I = (a3}, 0%, 075, D7) = =93

) )y t
113 = (05,05, 05,D5) = oY

t
o0 oo No o] Neo o) o0 No o] (o ¢)
& =uy = (&117‘312 + oF, 2e, — E] )

e =u3 = (e — oF, a5, 265, — By’
Using (86) and (87), (84) and (85) become
¢ = ¢ + 2Re[(BS + dy,) In {] + 2Re [Bfy(z) + dy,{ ] (90)
u=u™ + 2Re[(Ad + ¢y;) In{] + 2Re[Afy(2) + ¢y, 7] (91)
On the hole, using { = ¢ = €' and (88), (89), (71) and (72) one has from (90) and (91) that
¢(0) = IIx1(6) — [ITx2(0) + 2Re [Bfo(a) + dyza’z} (92)
u(o) = &°x1(0) + &5°x2(0) + 2Re [Afo(a) + cyza’z} (93)
Define a new function Ky({) as
Ko(¢) = Bfo(0) + dyppl 2 (94)
Then, (92) and (93) can be reduced into
d(0) = II3°x1(0) — 1I7°x2(0) + 2Re[Ko(0)] (95)
u(o) = &°x1(0) + &x2(0) + 2Im[YKo(0) — My,0?] (96)
where

Y=iAB!, M=Yd-ic

Once one obtains K ({) from the given boundary condition, fy(z) can be given by using (94), and then all
the field variables can be determined without difficulty.

To find K ({), one has to use the continuous conditions of the traction, the normal component of electric
displacement and the electric potential on the hole. These conditions require from (42) and (43) that
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o) = iy / D ds (97)
A
[u(o)]; = @4(0) (98)

where [ ], stands for taking the fourth row of the vector inside [ ], and iy = (0,0,0,1)".
Substituting (95), (96), (43) and (47) into (97) and (98) yields

I1°x,(0) — IT°x5(0) + 2Re[Ko(0)] = is2eImf, (o) (99)

[6°x1(0) + &x2(0)], + 2Im [YKo(0) — My,07%], = 2Ref,(0) (100)

Substituting (59), (60) and (48) into (99) and (100), and then multiplying both sides of them by
f, do /(0 — (), one can obtain after calculating the Cauchy integration that (Muskhelishvili, 1975)

!l ally¥ — ibII*)( —14?012(a0m8 a_g)(" (101)

Ko(() = 3 (

(@B + ibES) +Z(a w4 a]) (102)

1
_i[YKO(C) - MV2C72]4 = 5

To find &’ in (101), substituting (101) into (102), and then equating the coefficients of the same power ("
in both sides of (102), one has

amp(1+ oY) +a’(1 — g9 ¥ay) = (103)

where
1 4
c?:ia[iz Yy, 155 — —I—z— an (104)
=1
0 . Rim, 00 o o
¢y =iy, My = ) (agy — ibgy" )My (105)
K

=0, (n=3) (106)

Noting that Yy, is real (Suo et al., 1992), (103) and its conjugal equation result in
O — mic — Yy (co + mjc 0)

a, = y , (n=1,2) (107)

=0, (n>3) (108)
where

A, = (1=md") (1 +&Y5) — 2e0Yas (1 + my") (109)

Substituting (107) and (108) into (101) and (48), one can finally obtain
1

Ko(0) = =5 (ally¥ — ibII) Y — igegidi ' — igeoidn( 2 (110)

. a°

IQ) =2z 4+ ay (C +mpl7?) (111)
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where
Ay =dymy —al,  (n=1,2) (112)

After Ko({) is determined, fO(C) can be obtained from (94). With fo(C ) and fh(C), all the field variables can
be calculated.

In addition, it can be seen that if letting the heat flow at infinity be zero, one has from (105) and (107)
a3 =0, and (111) becomes

Silz) =z (113)

(113) implies that in this case, the electric field inside the elliptic hole is uniform. This is, however, not true
in general cases.

If the hole is not very slender (e.g. 5/a > 107"), the electric field inside the hole can be neglected, i.e. &
can be assumed to be zero. In this case, (110) can be simplified to

1
Ko(() = =3 (all5 = ibIT7) ! (114)

However, when the hole degenerates into a crack, the above simplification may lead to erroneous results,
as it will be seen in the following analysis.

3.4. The general expressions of stresses on the hole rim

Let ds = pd0 be infinitesimal arc-length of the hole boundary I where

p(0) = (a*sin® 0 + b* cos® 0) 2

Then, the unit vectors tangential and normal to I', as shown in Fig. 1, can be expressed as

dx; dx;
t— _ _
" _< ds’ ds’0>

de dx1
I e i |
m _<ds’ ds’()) (115)

where
x1 =acosl, x, =bsin0
On the other hand, we have
n’ = (cos @, sin ¢, 0)

m' = ( —sin ¢, cos ¢, 0) (116)
Comparing (115) with (116), one can obtain the relation between ¢ and 6 as
cos g — asin @
p(0)
bcos 0
sin ¢ = 117
o(0) o

Letting t,, and t, be the generalized traction on the hole surface and on the surface perpendicular to I,
respectively, see Fig. 1, one has
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t, = _(b,n = _(d),l cos ¢ + ¢,2 sin (P)

ti=—¢, =¢,singp—¢,cos¢
Then, the hoop stress a,, and the two shear stresses 7,,, and t,3 can be written as
O =M, by, Tp=m -t, T5=1I"t,
where
n, = (n,0), m/ = m,0), i;=(0,0,1,0)
Similarly, the hoop component of electric displacement is

of
D,=1i,-t,

2677

(118)

(119)

(120)

(121)

Obviously, if ¢ is obtained, the stress and electric displacement along the hole boundary can be cal-

culated from Egs. (120) and (121).

3.5. Numerical examples

Consider a transversly isotropic piezoelectric medium with an elliptic cavity and introduce a material
coordinate system (X, X>,X3), where the poling direction is parallel to the Xj-axis. If our attention is fo-
cused on the field in X; — X; plane, the out-of plane displacement does not couple with the in-plane dis-
placements and the electric potential, and the elastic matrices S, R and W degenerate into the 3 x 3 ones:

C11 0 0 0 C13 €31 Cyq 0 0
S=10 cy es |, R=|cu 0 0], W=[0 cnn e
0 es —en e;s 0 0 0 e —e3

and

:[))1 = (ﬁllaoao)ta ﬁZ = (05ﬁ33713)t

Assuming the considered medium to be cadmium selenide, the elements of S, R and W can be deter-

mined from the following material constants (Ashida et al., 1997):
Elastic constants:

e =74.1 x 10° Nm™2, ¢35 =39.3x10° Nm™2, ¢ =452 % 10° Nm™
¢y =83.6 x 10° Nm™2, ¢4 =13.2x 10° Nm™>
Piezoelectric constants:
ey =—0.16 cm™2, e;3=0.347 cm™2, e;s = —0.138 cm ™2
Dielectric constants:
11 = 82.6 x 10712 C?/Nm?, 33 =90.3 x 107> C*/Nm?, ¢ = 8.85 x 107> C*/Nm?

Pyroelectric constant: 13 = —2.94 x 10°° C/Km?
Stress-temperature constants:

Bi = 0.621 x 10° N/Km?, f3; = 0.551 x 10° N/Km?

Since the coefficients of thermal conductivity for cadmium selenide could not be found in the literature,

the following values are assumed: A3 =0, A;; = 4» =1 x 107® m?/s and /33 = 1.54;.
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Note that the above material constants are represented in the material coordinate system (X, X, X3).
For convenience, the X; — X3 plane is relabelled as the x; — x, plane in the following analyses. Conse-
quently, the numerical calculation of stress and electric displacement on the hole rim can be conducted by
using the formulations in the above Sections. Firstly, based on the given constants, we have

u = 1.8267i, b, =0.8303i, p;=0.5941i, p, = 0.816i

Then, the hoop components of stress and electric displacement along the rim of the hole are plotted, re-
spectively, for the different loading cases, as shown in Figs. 2-8.

Figs. 2 and 3 show that when the mechanical load is solely applied at infinity, the influence of ¢ is very
small on the stress and electric displacement on the rim of hole. Especially when a/b < 10, the electric field
within the hole can be neglected, that is, the impermeable boundary condition can be adopted to simplify
the analysis. However, when the remote electric load is applied, as it is found from Figs. 4-6, ¢, has great
influence on the electric displacement. For example, as a/b increases, as shown in Fig. 5, the results based
on the exact boundary condition show the maximum hoop component of electric displacement D,y
approaches a constant (Dpmax = D5°) at 0 =0 or m, while Dy, exhibits the nature of singularity if the
assumption & = 0 is used.

When the heat flux is exerted at infinity, it is shown from Figs. 7 and 8 that both the concentration
factors of stress and electric displacement increase as a/b increases, no matter if & is or not assumed to be
zero. These numerical results show that when no electric load exists, the impermeable boundary condition is
valid to the case of non-slender hole (e.g. a/b < 10 ). However, when there is an electric loading, this
condition may lead to erroneous results, specially when the home becomes a crack.

4. The solution to a crack
4.1. The complex potential

When the elliptic hole degenerates into a crack along the x;-axis, letting my=m;, =m, =1 and
Ry =R, =R, =a/2, one has from (109 ) and (112) that

25

20 (5;2 E
a/b=10, ao=D
o ) //a/b=10, &,=8.85"10[12
/ alb=2, 5,=8.85"10]'2

ab=1, g;=8.85"10"?

(S
T

o
T

0z B <21

Fig. 2. The variation of the hoop stress with 0 when ¢55 is solely applied.
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Fig. 3. The variation of the hoop electric displacement with 0 when ¢35 is solely applied.

Fig. 4. The variation of the hoop electric displacement with 0 when D5° is solely applied.

A, = —4e Yy, A,=2ilm[d)],

Using (107), one obtains

Similarly, one has

Re[a] = IRec!

Substituting (123) with (122); into (122), produces

1

A, =

0
=t Im|[c}]

-
75

(6,0

o
N

0.8

06

o
[N

o

06

o

08
0

+—afb=10, EU:U

aib=10, g;=6.85710°'

af=2, £,=8.85"10"2

/ alb=1, ;=8.85710""?

0z B <2m

a/b=10, EZD:D

47 al=10, g=B.8571072
g Pas &,=8.85"10""2
alb=1, g;=8.85"10"2

(n=1,2)

wl
s
m
(=2}
-~

0< 8 <2
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(122)

(123)

(124)

(125)
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150 T T T T T T

100 B

afb=100, g;=0
50+ /

afb=100, £;=8.85"10°12
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2
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0 1 2 a [ 7
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Fig. 5. The variation of the hoop electric displacement with 6 when DY is solely applied (a/b = 100).

3 . . . . . .
afb=10, 5,=6.85"10""2
2 e 2 ]
afh=2, £,=8.85"10
1 afb=1, g;=8.85"10°"3 i
L] ]

4 5 5 7

o
(%]
w

0= 8 <2m

Fig. 6. The variation of the hoop stress with 6 when D5° is solely applied.
Inserting (104) and (105) into (125), one finds

ia*ITmM,
Yy I1 > 126
280Y44 (Z Y ) 4: = 4egic, Yaq Ao Yoy (126)

Substituting (126) into (110), one can obtain the final expression of K¢ ({) for the case of a crack. The result
is

A

1 4 .. @’ ImM, 5
Ko({) = — ~all¥ VI | O 4 iy ———— g 127
o= —gemt +l42Y4 (2 5 2’>C T, = (127

With Ky ({), the complex potential fy(z) can be found from (94).
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50 T T T T T T

40 afb=5, ;=0

_, = +q-12
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=10t 4
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< of > i
o -

20F

30k

NERITY

0 | | L L . .
0

Fig. 7. The variation of the hoop stress with 0 when ¢5° is solely applied.
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Fig. 8. The variation of the hoop electric displacement with 6 when ¢5° is solely applied.

4.2. The field intensity factor
Define
K = (ku, ky, ky, kp)'
Then, at the right crack tip (x; = a), the field intensity factor vector K can be expressed as

K(a) = V2xlim(z — a)}¢ ,(2) (128)

z—a ’

In {-plane, by using (57), (128) can be rewritten as
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..
K(a) =\ Zlimo(0)/a (129)
Substituting (90) into (129), and noting from (72) that Bd + dy, is real, one has
K(a) :2\/E[B5+dy,] +2\/ERe1vin}K0(C)/dC (130)
a a -
Inserting (120) into (123), one can obtain the final solution of field intensity factor vector as
K(a) = Kr(a) + K,(a) + K} (a) + K (a) (131)
where
K7 (a) = 2\/§[B5+d~/1] (132)
K,(a) = V/mally® (133)
K{(a) = um ZRe Yy, | I3 (134)
K! () = —isy/ma o g (135)
KeYy

Observing (131), one can find that K(a) consists of the four parts, in which Kr(«) and K, (a) stand for the
contribution of the applied heat loads and mechanical-electric loads to all the field singularities, respec-
tively; while K¢ (a) results from the coupling effect between mechanical and electrical fields, and K} (a) the
coupling effect between thermal and electrical fields. Thus, K%(a) and K] (a) represent the contribution of
the applied mechanical-electrical and heat loads to the singularity of electric displacement field, respec-
tively.

However, if the crack is assumed to be impermeable, i.e., & is assumed to be zero, one can find from
(110) that the above coupling terms K¢ (a) and K} (a) are omitted. Obviously this will lead to erroneous
results.

Below let us examine several special cases. When there is no heat load at infinity, one can obtain from
(131)—(135) that

Kj(a) = Vmasy, (j=1,23);  Kia) \% me% (136)
which is consistent with the result of Gao and Wang (2000).When the electric loads are solely applied at
infinity, (129) leads to

K(a) =0 (137)
When the heat flow is solely applied at infinity, (131) becomes

K(a) = Kr(a) + K] (a) (138)

(138) shows that in this case, both the stress and electric field are singular.
For a purely-elastic anisotropic material subjected only to the remote heat flow, neglecting the terms
related to mechanical-¢lectrical loads and noting M4 = 0, one has from (131) that
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K(a) = z\/g[m +dy] (139)

where B degenerates into a 3 x 3 matrix, d a 3 x 1 vector. It can be confirmed that (139) is consistent with
the solution of Tarn and Wang (1993). Recently, this solution is also obtained by Chao and Shen (1998)
who studied thermal stresses in a generally anisotropic body with an elliptic inclusion. However, it should
be noted that there are some typing errors in Egs. (64) and (65) of Chao and Shen (1998), i.e. the positive
sign in these equations should be changed into the negative sign.

4.3. The electric field inside the crack

From (111), one has

file) =z 4 B2 2l (140)
"R TR 2
Substituting (140) into (45), and (44), gives
4¢ 16¢
DS(x1) = 701m )] + 7°Im [a3]x: (141)
4 16
E)(x)) = —ERe [a]] — ;Re [a3]x) (142)
Inserting (123) and (124) into (141) and (142) leads to
1< ImM.
0 _ 00 o0 4
Dj(x1) = D3 Y ;RC[YM]% T, (143)
3
ReM.
E(x)) = E° —|—ZIm[Y4i]a§ —Tt“q;"xl (144)

J=1

If the mechanical loads are solely applied at infinity, (143) and (144) becomes

1 3

DS = Dy 1o ;Re[nj]ogj (145)
3

E) =EF + Y Im[Yy]o3 (146)

j=1

Comparing the above results concerning crack with those in Gao and Wang (2001), it can be found that
they are consistent, though two different approaches are used. This implies that the Parton assumption is
also valid to the mathematical crack problem in thermopiezoelectric solid. Thus, the Parton assumption can
be directly used to solve a number of complicated crack problems in thermopiezoelectric materials.

5. Conclusions

This paper presents exact solutions for an infinite thermopiezoelectric medium with an insulated elliptic
hole or a crack under combined heat-mechanical—¢lectrical loadings at infinity. Even though there are the
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mathematical complexities inherent to the considered problem, the present analysis is very explicit. Espe-
cially when the hole degenerates into a crack, more concise results are obtained. Since these results are not
only concise, but also exact, they can be used as the fundamental solutions to prove the correctness of other
solutions for more complicated crack problems of thermopiezoelectric media. For example, this work
shows that for the crack problem in thermopiezoelectric solids, the solutions based on the Parton as-
sumption is right. This indicates that one can exactly and effectively solve the linear crack problem in
piezoelectric media by the direct use of the Parton assumption.
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