
An exact and explicit treatment of an elliptic hole problem in
thermopiezoelectric media

Cun-Fa Gao *, Ying-Tao Zhao, Min-Zhong Wang

Department of Mechanics and Engineering Science, Peking University, Beijing 100871, People’s Republic of China

Received 30 June 1999

Abstract

This paper presents an exact solution for the problem of an elliptic hole or a crack in a thermopiezoelectric solid.

First, based on the extended version of Eshelby–Stroh’s formulation, the generalized 2D problems of an elliptical hole

in a thermopiezoelectric medium subject to uniform heat flow and mechanical–electrical loads at infinity are studied

according to exact boundary conditions at the rim of the hole. The complex potentials in the medium and the electric

field inside the hole are obtained in closed form, respectively. Then, when the hole degenerates into a crack, the explicit

solutions for the field intensity factors near the crack tip and the electric field inside the crack are presented. It is shown

that the singularities of all the field are dependent on the material constants, the applied heat load and mechanical loads

at infinity, but not on the applied electric loads. It is also found that the electric field inside the crack is linearly variable,

which is different from the result based on the impermeable crack model. � 2002 Elsevier Science Ltd. All rights re-

served.
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1. Introduction

During the past few decades, widespread attention has been given to the thermal stress problems in an
elastic medium with inclusions, holes or cracks. A considerable work on this subject can be found in the
literature. For example, one can cite the work of Florence and Goodier (1960), Sih (1962), Lee and Jang
(1993), Zhang and Hasebe (1993), Chao and Shen (1993, 1997), Kattis and Patia (1994), and Kaminskii and
Flegantov (1994) for the cases of isotropic media, and also those of Sturla and Barber (1988), Hwu (1990,
1992), Tarn and Wang (1993), Chao and Chang (1994), Lin et al. (1997) and Chao and Shen (1998) for the
cases of anisotropic materials. In recent years, the thermo-electric-mechanical coupling problem in ther-
mopiezoelectric media with holes or cracks has also received much attention with increasingly wide ap-
plication of thermopiezoelectric materials in the engineering. In contrast, however, relatively little work has
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been done due to the mathematical complexity. Recently, several solutions of thermopiezoelectric media
with cracks have been given by Shang et al. (1996) for the 3D problem of a penny-shaped crack, and also by
Yu and Qin (1996), Qin and Mai (1997), Yang et al. (1997), Shen and Kuang (1998) and Qin et al. (1999)
within the framework of 2D analysis. But it should be seen that all the above analyses are based on an
impermeable boundary assumption, i.e. the electric field inside cracks is assumed to be zero. More and
more findings show the assumption may lead to erroneous results for the crack problem in piezoelectric
media (see, e.g. the work of McMeeking (1989), Pak and Tobin (1993), Dunn (1994), Sosa and Khutor-
yansky (1996), Kogan et al. (1996), Zhang et al., 1998 and Gao and Fan (1998, 1999)). More recently, Gao
and Wang (2001) studied the 2D problem of thermopiezoelectric materials with cracks by means of the
Parton assumption, i.e. the crack is considered as a thin slit and thus the normal components of electric
displacement and the tangential component of electric field are assumed to be continuous across the slit
(Parton, 1976). However, the correctness of Gao and Wang’s results (2001) remain to be proved. Thus, it is
very necessary to give an exact and explicit solution for a crack in thermopiezoelectric media. It is well
known that an elliptic hole problem is the basis of the corresponding crack problem in elastic analysis.
Although the exact solution of a crack in a linear piezoelectric solid has been obtained by Gao and Fan
(1999) and Gao (2000) who began with an elliptical hole, to the authors’ knowledge, the similar success has
yet not been reached for the crack problem in thermopiezoelectric solid.
In the present work, we treat the generalized 2D problem of an elliptic hole or a crack in an infinite

thermopiezoelectric medium subjected to uniform heat flow together with uniform mechanical-electric loads
at infinity. The analysis is based on the Stroh formalism and the exact boundary conditions at the rim of the
hole. The whole contents consist of five sections. Following this brief introduction, basic equations con-
cerning the thermopiezoelectricity are summarized in Section 2. Then, both the analytical solutions and
numerical results of the elliptic hole are presented in Section 3, respectively. In Section 4 given are the exact
solutions of a crack, including the complex potential in the medium, the field intensity factor near the crack
tips and the electric field inside the crack. Finally, the conclusions on the current work are drawn in Section 5.

2. Basic equations

In a fixed rectangular coordinate system xj (j ¼ 1; 2; 3), denoting by u, u, r, D, E, T and q the dis-
placements, electric potential, stress, electric displacement, electric field, temperature and heat flux, re-
spectively, the complete set of governing equations for piezothermoelastic problem can be expressed, in the
stationary case without body force, extrinsic bulk charge and heat source, as (Mindlin, 1974; Wu, 1984;
Chandrasekharaiah, 1988; Shen and Kuang, 1998)

rij ¼ cijklckl � eijsEs � bijT ð1Þ

Di ¼ eisEs þ eirscrs þ siT ð2Þ

qi ¼ �kijT;j ð3Þ

cij ¼ 1
2
ui;j
�

þ uj;i
�

ð4Þ

Ei ¼ �u;i ð5Þ

rij;j ¼ 0 ð6Þ

Di;i ¼ 0 ð7Þ

qi;i ¼ 0 ð8Þ
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where

cijkl ¼ cjikl ¼ cijlk ¼ cklij; ekij ¼ ekji; eij ¼ eji; bij ¼ bji; kij ¼ kji

In the above equations, repeated indices imply summation, a comma stands for differentiation, and cijkl,
ekij, eij, bij, kij, si are the elasticity constants, piezoelectricity constants, dielectric constants, stress-tem-
perature coefficients, coefficients of heat conduction and pyroelectric coefficients, respectively.
Substituting (1), (2) and (3) together with (4) and (5) into (6), (7) and (8), respectively, one has

cijrsur
�

þ esjiu
�
;si
� bijT;i ¼ 0 ð9Þ

ð � eisu þ eirsurÞ;si þ siT;i ¼ 0 ð10Þ

kijT;ij ¼ 0 ð11Þ
Consider the generalized 2D problems of thermopiezoelectricity with geometry and loading independent

of x3. In this case, the governing Eq. (11) becomes

k11
o2T
o2x21

þ 2k12
o2T
o2x1x2

þ k22
o2T
o2x22

¼ 0 ð12Þ

The general solution of (12) is

T ¼ 2Re g0 ztð Þ
� �

; zt ¼ x1 þ ltx2 ð13Þ

where Re means taking the real part; g is a complex function to be determined; the prime (0) indicates
differentiation with respect to its argument, and lt is the heat eigenvalue which is determined from

k22l
2
t þ 2k12lt þ k11 ¼ 0 ð14Þ

(14) produces the solution of lt with positive imaginary part as

lt ¼ ð � k12 þ ijtÞ=k22 ð15Þ

jt ¼ k11k22
�

� k212
�1=2

; k11k22 � k212 > 0 ð16Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
.

Inserting (13) into (3), and then using (14)–(16) leads to

q1 ¼ 2Re iltjtg00 ztð Þ
� �

ð17Þ

q2 ¼ �2Re ijtg00 ztð Þ
� �

ð18Þ

On the other hand, the resultant heat flow Q can be expressed as

Q ¼
Z
qn ds ð19Þ

where s is the arc-length, qn stands for the heat flux in the direction normal to s.
Noting

qn ds ¼ q1 dx2 � q2 dx1 ð20Þ

one has, by substituting (20) together with (17) and (18) into (19), that

Q ¼ 2Re ijtg0 ztð Þ
� �

ð21Þ
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From (19)–(21) one obtains

2Re ig0 ztð Þ
� �

¼ 1

jt

Z
q1 dx2 � q2 dx1 ð22Þ

or

2Re ig0 ztð Þ
� �

¼ 1

jt

Z
qnðsÞds ð23Þ

Introduce two function vectors:

u ¼ u1; u2; u3;uð Þt; / ¼ /1;/2;/3;/4ð Þt

where the superscript t represents the transpose; u and / are generalized displacement function and gen-
eralized stress function, respectively, which are related to the field variables by

rj1 ¼ �/j;2; rj2 ¼ /j;1 ðj ¼ 1; 2; 3Þ ð24Þ

D1 ¼ �/4;2; D2 ¼ /4;1; E1 ¼ �u4;1; E2 ¼ �u4;2 ð25Þ

Then, the general solution of u and / can be written as

u ¼ uh þ up ð26Þ

/ ¼ /h þ /p ð27Þ

where up and /p are the particular solution of (9) and (10), while uh and /h the homogeneous solutions of (9)
and (10) corresponding to the isothermal case, here uh and /h can be expressed as (Suo et al., 1992; Chung
and Ting, 1996)

uh ¼ Af z�ð Þ þ Af z�ð Þ ð28Þ

/h ¼ Bf z�ð Þ þ Bf z�ð Þ ð29Þ
with

f z�ð Þ ¼ f1 z1ð Þ; f2 z2ð Þ; f3 z3ð Þ; f4 z4ð Þ½ 
t; za ¼ x1 þ lax2 ða ¼ 1 � 4Þ
In (28) and (29), A and B are two 4� 4 matrices, faðzaÞ are complex potentials to be found, and la are the

complex eigenvalues with positive imaginary parts and can be obtained from the equation

D� lð Þj j ¼ 0 ð30Þ
where

D� lð Þ ¼ Sþ l Rð þ RtÞ þ l2W

S ¼ S0 e11
et11 �e11

� �
; R ¼ R0 e21

et12 �e12

� �
; W ¼ W0 e22

et22 �e22

� �

and

S0ð Þik ¼ ci1k1; R0ð Þik ¼ ci1k2; W0ð Þik ¼ ci2k2; i; kð ¼ 1; 2; 3Þ

eik ¼ ei1k; ei2k; ei3kð Þt; i; kð ¼ 1; 2Þ
In this paper we assume that la are distinct. For this case, A and B are nonsingular, and there is the

following orthogonality relation (Chung and Ting, 1996):
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Bt At

B
t
A
t

� �
A A

B B

� �
¼ I 0

0 I

� �
ð31Þ

where I is the 4� 4 unit matrix.
On the other hand, the particular solutions of (9) and (10) are (Shen and Kuang, 1998)

up ¼ 2Re cg ztð Þ½ 
 ð32Þ

/p ¼ 2Re dg ztð Þ½ 
 ð33Þ

where c and d are the heat eigenvectors, which can be determined from the following equations

D� ltð Þc ¼ b1 þ ltb2

d ¼ Rtð þ ltWÞc� b2

b1 ¼ b11; b21; b31; s1ð Þt

b2 ¼ b12; b22; b32; s2ð Þt

Substituting (28), (29), (32) and (33) into (26) and (27) gives the final solution of u and / such that

u ¼ 2Re Af z�ð Þ½ þ cg ztð Þ
 ð34Þ

/ ¼ 2Re Bf z�ð Þ½ þ dg ztð Þ
 ð35Þ

Assuming that the considered problem satisfies such a condition that for an arbitrary point on the
boundary, the corresponding points zt and za (a ¼ 1–4) can be translated into an identical point, e.g. on the
x1-axis or an unit circle, and as a result the boundary equation can be reduced to that containing one
variable. Only under this condition, the one-complex-variable approach introduced by Suo (1990) can be
used to simplified analysis when one considers the boundary conditions (Ting, 2000; Gao, 2001). In the
present work these one-complex variable equations can be summarized as

T ¼ 2Re g0 zð Þ
� �

ð36Þ

q1 ¼ 2Re iltjtg00 zð Þ
� �

ð37Þ

q2 ¼ �2Re ijtg00 zð Þ
� �

ð38Þ

Q ¼ 2Re ig0 zð Þ
� �

¼ 1

jt

Z
q1 dx2 � q2 dx1 ð39Þ

u ¼ 2Re Af zð Þ½ þ cg zð Þ
 ð40Þ

/ ¼ 2Re Bf zð Þ½ þ dg zð Þ
 ð41Þ

If the traction, and the normal component of electric displacement Dn are given on the boundary, the
corresponding boundary condition can be expressed as

2Re Bf zð Þ½ þ dg zð Þ
 ¼
Z
s
tds; t ¼ t1; t2; t3;Dn½ 
t ð42Þ

where tj (j ¼ 1; 2; 3) is the component of surface traction vector.

C.-F. Gao et al. / International Journal of Solids and Structures 39 (2002) 2665–2685 2669



After the solutions of g zð Þ and f zð Þ are obtained from Eqs. (36)–(42), a replacement of zt, z1, z2, z3 or z4
should be made for each component function to calculate field quantities from (24) and (25).

3. The solution to an elliptic hole

Consider a generalized 2D problem of a thermopiezoelectric medium containing an elliptic hole L, which
is described by the equation: ðx21=a2Þ þ ðx22=b2Þ ¼ 1, as shown in Fig. 1. The uniform mechanical–electric

loads P1
2 ¼ r1

21; r
1
22; r

1
23;D

1
2

� �t
and P1

1 ¼ r1
11; r

1
12; r

1
13;D

1
1

� �t
together with uniform heat flow q1 ¼

q11 ; q
1
2

� �t
are simultaneously applied at infinity. In addition, the hole is assumed to be free of force, external

charge and heat flow, but filled with air or vacuum.

3.1. The electric field inside the hole

Let the electric potential uh zð Þ inside the hole be
uh zð Þ ¼ 2Refh zð Þ ð43Þ

where fh zð Þ is an analytic function. Then inside L, the electric field components E01;E
0
2

� �
and electric dis-

placement components D01;D
0
2

� �
can be expressed as:

E01 ¼ �2ReFh zð Þ; E02 ¼ 2ImFh zð Þ ð44Þ

D01 ¼ �2e0ReFh zð Þ; D02 ¼ 2e0ImFh zð Þ ð45Þ

where Im indicates the imaginary part; e0 is the dielectric constant of air or vacuum; Fh zð Þ ¼ dfh zð Þ=dz.
Using Gauss’ law, one hasZ

s
D0n ds ¼

Z
s
D02 dx1 � D01 dx2 ð46Þ

Inserting (45) into the right side of (46) givesZ
s
D0n ds ¼ 2e0Imfh zð Þ ð47Þ

Noting that the exterior of the ellipse L can be mapped onto the exterior of the unit circle c in the f-plane
by

Fig. 1. An elliptical hole in a thermopiezoelectric solid.
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z fð Þ ¼ R0 f
�

þ m0f
�1�; R0 ¼ að þ bÞ=2; m0 ¼ að � bÞ= að þ bÞ

then fh zð Þ can be expressed inside L in the form of the Faber series as (Cutis, 1971; Kosmodamianskii and
Chemie, 1981)

f̂fh fð Þ ¼
X1
n¼1

a0n fn
�

þ mn
0f

�n� ð48Þ

where f̂fh fð Þ ¼ fh z fð Þ½ 
; a0n are complex coefficients to be determined.

3.2. The temperature field in the medium

From (39), the insulated boundary condition at the rim of the hole requires

2Re ig0 zð Þ
� �

¼ 0 ð49Þ

For the present problem, g0 zð Þ takes the form of

g0 zð Þ ¼ c 2ð Þ
t zþ g00 zð Þ ð50Þ

where g00 zð Þ is a holomorphic function outside the hole, and g00 1ð Þ ¼ c 1ð Þ
t here c 1ð Þ

t is a constant corre-
sponding to an uniform temperature field and thus can be neglected without loss in generality; c 2ð Þ

t is an-
other constant to be determined.
Substituting (50) into (37) and (38), and then taking the limiting z! 1 yields

2Re iltjtc
2ð Þ
t

� �
¼ q11 ð51Þ

2Re ijtc 2ð Þ
t

� �
¼ �q12 ð52Þ

(51) and (52) give

c 2ð Þ
t ¼ q11 þ ltq

1
2

ijt lt � ltð Þ ð53Þ

In fact, c 2ð Þ
t z in (50) stands for the complex potential of an infinite medium without hole subjected to the

given uniform heat flow at infinity. Thus, one has from (39) that

2Re ic 2ð Þ
t z

� �
¼ 1

jt

Z
q11 dx2
�

� q12 dx1
�
¼ qs ð54Þ

where

qs ¼
1

jt
q11 x2
�

� q12 x1
�

ð55Þ

Substituting (50) into (49) and then using (54) results in

2Re ig00 zð Þ
� �

¼ �qs ð56Þ

Introduce the following mapping function zaðfÞ:

za fð Þ ¼ Ra f
�

þ maf
�1� ð57Þ

with

Ra ¼ að � ilabÞ=2; ma ¼ að þ ilabÞ= að � ilabÞ; að ¼ t; 1–4Þ
which transforms the exterior of the ellipse La in the za-plane into the exterior of a unit circle c in f-plane.
Then, (56) can be rewritten as
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2Re iĝg00 fð Þ
h i

¼ �qs ð58Þ

Noting that on the hole, f ¼ r ¼ eih and

x1 ¼ a cos h ¼ a
2

1

r

�
þ r



ð59Þ

x2 ¼ b sin h ¼ i b
2

1

r

�
� r



ð60Þ

one obtains by using (58) and (55), (59) and (60) that

2Re iĝg00 rð Þ
h i

¼ �qs rð Þ ð61Þ

where

qs rð Þ ¼ � 1

2jt
aq12 r

��
þ 1

r



þ ibq11 r

�
� 1

r


�
ð62Þ

Multiplying both sides of (61) by
R

c dr=ðr � fÞ, and then calculating the Cauchy integration leads to
(Muskhelishvili, 1975)

iĝg00 fð Þ ¼ 1

2jt
aq12
�

� ibq11
�
f�1 þ ic 1ð Þ

t ð63Þ

Using (63) and (50), the final form of g0 zð Þ can be expressed as

g0 zð Þ ¼ c 2ð Þ
t zþ c 1ð Þ

t þ 1

2ijt
aq12
�

� ibq11
�
f�1 zð Þ ð64Þ

The integration of (64) with respect to z gives

g zð Þ ¼ 1
2
c 2ð Þ
t z

2 þ c 1ð Þ
t zþ c1 ln f zð Þ þ c2f

�2 zð Þ ð65Þ

where

c1 ¼
Rt
2ijt

aq12
�

� ibq11
�
; c2 ¼

1

2
mtc1 ð66Þ

3.3. The electro-elastic field in the medium

Observing (65), the complex potential in the medium can be expressed as

f zð Þ ¼ 1
2
c 2ð Þz2 þ c 1ð Þzþ d ln f zð Þ þ f0 zð Þ ð67Þ

where f0 zð Þ is a holomorphic function outside the hole; c 2ð Þ, c 1ð Þ and d are three constant vectors to be found.
To find d, one has to consider the force equilibrium condition and the conditions of single-valued dis-

placement and electric potential. These conditions requireI
Cn

u;1 dz ¼ 0;

I
Cn

/;1 dz ¼ 0 ð68Þ

where Cn stands for a clockwise closed-contour encircling the hole, and

u;1 ¼ 2Re Af 0 zð Þ
�

þ cg0 zð Þ
�

ð69Þ
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/;1 ¼ 2Re Bf 0 zð Þ
h

þ dg0 zð Þ
i

ð70Þ

Substituting (69) and (70) into (68), and then using the residue theorem produces

Ad½ þ cc1
 � Ad þ cc1½ 
 ¼ 0 ð71Þ

Bd½ þ dc1
 � Bd þ dc1½ 
 ¼ 0 ð72Þ
(71) and (72) show that Ad þ cc1 and Bd þ dc1 are real, respectively.
Using (31) one can obtain from (71) and (72) that

d ¼ Bt cc1ð � cc1Þ þ At dc1
�

� dc1
�

ð73Þ
On the other hand, substituting (65) and (67) into (69) and (70), and then taking the limiting z! 1 (in

this case, f ! 1) leads to
2Re Ac 2ð Þ��

þ cc 2ð Þ
t

�
z
�
þ 2Re Ac 1ð Þ�

þ cc 1ð Þ
t

�
¼ u1;1 ð74Þ

2Re Bc 2ð Þ��
þ dc 2ð Þ

t

�
z
�
þ 2Re Bc 1ð Þ�

þ dc 1ð Þ
t

�
¼ /1

;1 ð75Þ

where

/1
;1 ¼ P1

2 ; u1;1 ¼ e111; e
1
12

�
þ x1

3 ; 2e
1
13;� E1

1

�t ð76Þ

In (76), e111, e112, e113 and E
1
1 are the components of strain and electric field at infinity, respectively; x1

3

denotes the rotation at infinity.
Considering the fact that both the stresses and strains are bounded at infinity, (74) and (75) gives

2Re Ac 1ð Þ�
þ cc 1ð Þ

t

�
¼ u1;1 ð77Þ

2Re Bc 1ð Þ�
þ dc 1ð Þ

t

�
¼ /1

;1 ð78Þ

and

2Re Ac 2ð Þ��
þ cc 2ð Þ

t

�
z
�
¼ 0 ð79Þ

2Re Bc 2ð Þ��
þ dc 2ð Þ

t

�
z
�
¼ 0 ð80Þ

Using (31) one obtains from (77) and (78) that

c 1ð Þ ¼ Btu1;1 þ A
t/1

;1 � Bt cc 2ð Þ
t

�
þ cct 2ð Þ�� At dc 2ð Þ

t

h
þ dct

2ð Þ
i

ð81Þ

On the other hand, (79) and (80) imply that the complex functions Ac 2ð Þ þ cc 2ð Þ
t

h i
z and Bc 2ð Þ þ dc 2ð Þ

t

h i
z,

which are corresponding to the uniform heat flow in an infinite medium without holes, will not produce
stress and strain, and thus can be cut out in the boundary equations. Keeping in mind that, (65) and (67)
can be rewritten as

g zð Þ ¼ c 1ð Þ
t zþ c1 ln f zð Þ þ c2f

�2 zð Þ ð82Þ

f zð Þ ¼ c 1ð Þzþ d ln f zð Þ þ f0 zð Þ ð83Þ
Inserting (82) and (83) into (40) and (41) yields

/ ¼ 2Re Bc 1ð Þ��
þ dc 1ð Þ

t

�
z
�
þ 2Re Bdð½ þ dc1Þ ln f
 þ 2Re Bf0 zð Þ

�
þ dc2f�2

�
ð84Þ

u ¼ 2Re Ac 1ð Þ��
þ cc 1ð Þ

t

�
z
�
þ 2Re Adð½ þ cc1Þ ln f
 þ 2Re Af0 zð Þ

�
þ cc2f�2

�
ð85Þ
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Obviously the first terms on the right of (84) and (85) stand for the complex potentials of an infinite
medium without hole subjected to the uniform mechanical–electric loads at infinity. In this case, the
electric-elastic fields in the medium are the same everywhere as those applied at infinity. This implies from
(24) and (25) that the following identities hold

2Re Bc 1ð Þ��
þ dc 1ð Þ

t

�
z
�
¼ /1 ð86Þ

2Re Ac 1ð Þ��
þ cc 1ð Þ

t

�
z
�
¼ u1 ð87Þ

where

/1 ¼ P1
2 x1 � P1

1 x2 ð88Þ

u1 ¼ e11 x1 þ e12 x2 ð89Þ

P1
1 ¼ r1

11; r
1
12; r

1
13;D

1
1

� �t ¼ �/1
;2

P1
2 ¼ r1

21; r
1
22; r

1
23;D

1
2

� �t ¼ /1
;1

e11 ¼ u1;1 ¼ e111; e
1
12

�
þ x1

3 ; 2e
1
13;� E1

1

�t
e12 ¼ u1;2 ¼ e121

�
� x1

3 ; e
1
22; 2e

1
23;� E1

2

�t
Using (86) and (87), (84) and (85) become

/ ¼ /1 þ 2Re Bdð½ þ dc1Þ ln f
 þ 2Re Bf0 zð Þ
�

þ dc2f�2
�

ð90Þ

u ¼ u1 þ 2Re Adð½ þ cc1Þ ln f
 þ 2Re Af0 zð Þ
�

þ cc2f�2
�

ð91Þ

On the hole, using f ¼ r ¼ eih and (88), (89), (71) and (72) one has from (90) and (91) that

/ rð Þ ¼ P1
2 x1 rð Þ � P1

1 x2 rð Þ þ 2Re Bf̂f0 rð Þ
h

þ dc2r�2
i

ð92Þ

u rð Þ ¼ e11 x1 rð Þ þ e12 x2 rð Þ þ 2Re Af̂f0 rð Þ
h

þ cc2r�2
i

ð93Þ

Define a new function K0 fð Þ as

K0 fð Þ ¼ Bf̂f0 fð Þ þ dc2f�2 ð94Þ
Then, (92) and (93) can be reduced into

/ rð Þ ¼ P1
2 x1 rð Þ � P1

1 x2 rð Þ þ 2Re K0 rð Þ½ 
 ð95Þ

u rð Þ ¼ e11 x1 rð Þ þ e12 x2 rð Þ þ 2Im YK0 rð Þ
�

�Mc2r
�2� ð96Þ

where

Y ¼ iAB�1; M ¼ Yd� ic
Once one obtains K0 fð Þ from the given boundary condition, f0 zð Þ can be given by using (94), and then all

the field variables can be determined without difficulty.
To find K0 fð Þ, one has to use the continuous conditions of the traction, the normal component of electric

displacement and the electric potential on the hole. These conditions require from (42) and (43) that
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/ rð Þ ¼ i4

Z
s
D0n ds ð97Þ

u rð Þ½ 
4 ¼ uh rð Þ ð98Þ
where ½ 
4 stands for taking the fourth row of the vector inside ½ 
, and i4 ¼ 0; 0; 0; 1ð Þt.
Substituting (95), (96), (43) and (47) into (97) and (98) yields

P1
2 x1 rð Þ � P1

1 x2 rð Þ þ 2Re K0 rð Þ½ 
 ¼ i42e0Imf̂fh rð Þ ð99Þ

e11 x1 rð Þ
�

þ e12 x2 rð Þ
�
4
þ 2Im YK0 rð Þ

�
�Mc2r

�2�
4
¼ 2Ref̂fh rð Þ ð100Þ

Substituting (59), (60) and (48) into (99) and (100), and then multiplying both sides of them byR
c dr= r � fð Þ, one can obtain after calculating the Cauchy integration that (Muskhelishvili, 1975)

K0 fð Þ ¼ � 1
2
aP1

2

�
� ibP1

1

�
f�1 � i4e0i

X1
n¼1

a0nm
n
0

�
� a0n

�
f�n ð101Þ

�i YK0 fð Þ
�

�Mc2f
�2�

4
¼ 1
2
aE1

1

�
þ ibE1

2

�
f�1 þ

X1
n¼1

a0nm
n
0

�
þ a0n

�
f�n ð102Þ

To find a0n in (101), substituting (101) into (102), and then equating the coefficients of the same power f�n

in both sides of (102), one has

a0nm
n
0 1ð þ e0Y44Þ þ a0n 1ð � e0Y44Þ ¼ c0n ð103Þ

where

c01 ¼
1

2
a i
X4
j¼1

Y4jP1
2j

"
� E1

1

#
þ i
1

2
b i
X4
j¼1

Y4jP1
1j

"
� E1

2

#
ð104Þ

c02 ¼ ic2M4 ¼
Rtmt

4jt
aq12
�

� ibq11
�
M4 ð105Þ

c0n ¼ 0; ðnP 3Þ ð106Þ
Noting that Y44 is real (Suo et al., 1992), (103) and its conjugal equation result in

a0n ¼
c0n � mn

0c
0
n � e0Y44 c0n þ mn

0c
0
n

� �
Dn

; ðn ¼ 1; 2Þ ð107Þ

a0n ¼ 0; ðnP 3Þ ð108Þ
where

Dn ¼ 1
�

� m2n0
�
1
�

þ e20Y
2
44

�
� 2e0Y44 1

�
þ m2n0

�
ð109Þ

Substituting (107) and (108) into (101) and (48), one can finally obtain

K0 fð Þ ¼ � 1
2
aP1

2

�
� ibP1

1

�
f�1 � i4e0iK1f

�1 � i4e0iK2f
�2 ð110Þ

f̂fh fð Þ ¼ a01
R0
zþ a02 f2

�
þ m20f

�2� ð111Þ
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where

Kn ¼ a0nm
n
0 � a0n; ðn ¼ 1; 2Þ ð112Þ

After K0 fð Þ is determined, f̂f0 fð Þ can be obtained from (94). With f̂f0 fð Þ and f̂fh fð Þ, all the field variables can
be calculated.
In addition, it can be seen that if letting the heat flow at infinity be zero, one has from (105) and (107)

a02 ¼ 0, and (111) becomes

fh zð Þ ¼ a01
R0
z ð113Þ

(113) implies that in this case, the electric field inside the elliptic hole is uniform. This is, however, not true
in general cases.
If the hole is not very slender (e.g. b=a > 10�1), the electric field inside the hole can be neglected, i.e. e0

can be assumed to be zero. In this case, (110) can be simplified to

K0 fð Þ ¼ � 1
2
aP1

2

�
� ibP1

1

�
f�1 ð114Þ

However, when the hole degenerates into a crack, the above simplification may lead to erroneous results,
as it will be seen in the following analysis.

3.4. The general expressions of stresses on the hole rim

Let ds ¼ qdh be infinitesimal arc-length of the hole boundary C where

q hð Þ ¼ a2 sin2 h
�

þ b2 cos2 h
�1=2

Then, the unit vectors tangential and normal to C, as shown in Fig. 1, can be expressed as

nt ¼
�
� dx1
ds

;� dx2
ds

; 0




mt ¼ dx2
ds

;

�
� dx1
ds

; 0



ð115Þ

where

x1 ¼ a cos h; x2 ¼ b sin h

On the other hand, we have

nt ¼ cosu; sinu; 0ð Þ

mt ¼ ð � sinu; cosu; 0Þ ð116Þ
Comparing (115) with (116), one can obtain the relation between u and h as

cosu ¼ a sin h
q hð Þ

sinu ¼ � b cos h
q hð Þ ð117Þ

Letting tm and tn be the generalized traction on the hole surface and on the surface perpendicular to C,
respectively, see Fig. 1, one has
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tm ¼ �/;n ¼ � /;1 cosu
�

þ /;2 sinu
�

ð118Þ

tn ¼ �/;m ¼ /;1 sinu � /;2 cosu ð119Þ

Then, the hoop stress rnn and the two shear stresses snm and sn3 can be written as

rnn ¼ nt� � tn; snm ¼ mt
� � tn; sn3 ¼ it3 � tn ð120Þ

where

nt� ¼ nt; 0ð Þ; mt
� ¼ mt; 0ð Þ; it3 ¼ 0; 0; 1; 0ð Þ

Similarly, the hoop component of electric displacement is

Dn ¼ it4 � tn ð121Þ

Obviously, if / is obtained, the stress and electric displacement along the hole boundary can be cal-
culated from Eqs. (120) and (121).

3.5. Numerical examples

Consider a transversly isotropic piezoelectric medium with an elliptic cavity and introduce a material
coordinate system X1;X2;X3ð Þ, where the poling direction is parallel to the X3-axis. If our attention is fo-
cused on the field in X1 � X3 plane, the out-of plane displacement does not couple with the in-plane dis-
placements and the electric potential, and the elastic matrices S, R and W degenerate into the 3� 3 ones:

S ¼
c11 0 0
0 c44 e15
0 e15 �e11

2
4

3
5; R ¼

0 c13 e31
c44 0 0
e15 0 0

2
4

3
5; W ¼

c44 0 0
0 c33 e33
0 e33 �e33

2
4

3
5

and

b1 ¼ b11; 0; 0ð Þt; b2 ¼ 0; b33; s3ð Þt

Assuming the considered medium to be cadmium selenide, the elements of S, R and W can be deter-
mined from the following material constants (Ashida et al., 1997):
Elastic constants:

c11 ¼ 74:1� 109 Nm�2; c13 ¼ 39:3� 109 Nm�2; c12 ¼ 45:2� 109 Nm�2

c33 ¼ 83:6� 109 Nm�2; c44 ¼ 13:2� 109 Nm�2

Piezoelectric constants:

e31 ¼ �0:16 cm�2; e33 ¼ 0:347 cm�2; e15 ¼ �0:138 cm�2

Dielectric constants:

e11 ¼ 82:6� 10�12 C2=Nm2; e33 ¼ 90:3� 10�12 C2=Nm2; e0 ¼ 8:85� 10�12 C2=Nm2

Pyroelectric constant: s3 ¼ �2:94� 10�6 C=Km2

Stress-temperature constants:

b11 ¼ 0:621� 106 N=Km2; b33 ¼ 0:551� 106 N=Km2

Since the coefficients of thermal conductivity for cadmium selenide could not be found in the literature,
the following values are assumed: k13 ¼ 0, k11 ¼ k22 ¼ 1� 10�6 m2/s and k33 ¼ 1:5k11.
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Note that the above material constants are represented in the material coordinate system X1;X2;X3ð Þ.
For convenience, the X1 � X3 plane is relabelled as the x1 � x2 plane in the following analyses. Conse-
quently, the numerical calculation of stress and electric displacement on the hole rim can be conducted by
using the formulations in the above Sections. Firstly, based on the given constants, we have

l1 ¼ 1:8267i; l2 ¼ 0:8303i; l3 ¼ 0:5941i; lt ¼ 0:816i

Then, the hoop components of stress and electric displacement along the rim of the hole are plotted, re-
spectively, for the different loading cases, as shown in Figs. 2–8.
Figs. 2 and 3 show that when the mechanical load is solely applied at infinity, the influence of e0 is very

small on the stress and electric displacement on the rim of hole. Especially when a=b < 10, the electric field
within the hole can be neglected, that is, the impermeable boundary condition can be adopted to simplify
the analysis. However, when the remote electric load is applied, as it is found from Figs. 4–6, e0 has great
influence on the electric displacement. For example, as a=b increases, as shown in Fig. 5, the results based
on the exact boundary condition show the maximum hoop component of electric displacement Dhmax

approaches a constant (Dhmax ¼ D1
2 ) at h ¼ 0 or p, while Dhmax exhibits the nature of singularity if the

assumption e0 ¼ 0 is used.
When the heat flux is exerted at infinity, it is shown from Figs. 7 and 8 that both the concentration

factors of stress and electric displacement increase as a=b increases, no matter if e0 is or not assumed to be
zero. These numerical results show that when no electric load exists, the impermeable boundary condition is
valid to the case of non-slender hole (e.g. a=b < 10 ). However, when there is an electric loading, this
condition may lead to erroneous results, specially when the home becomes a crack.

4. The solution to a crack

4.1. The complex potential

When the elliptic hole degenerates into a crack along the x1-axis, letting m0 ¼ mt ¼ ma ¼ 1 and
R0 ¼ Rt ¼ Ra ¼ a=2, one has from (109 ) and (112) that

Fig. 2. The variation of the hoop stress with h when r1
22 is solely applied.
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Dn ¼ �4e0Y44; Kn ¼ 2iIm a0n
� �

; ðn ¼ 1; 2Þ ð122Þ

Using (107), one obtains

Im a0n
� �

¼ � 2

Dn
Im c0n
� �

ð123Þ

Similarly, one has

Re a0n
� �

¼ 1
2
Re c0n
� �

ð124Þ

Substituting (123) with (122)1 into (122)2 produces

Kn ¼
i

e0Y44
Im c0n
� �

ð125Þ

Fig. 4. The variation of the hoop electric displacement with h when D1
2 is solely applied.

Fig. 3. The variation of the hoop electric displacement with h when r1
22 is solely applied.
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Inserting (104) and (105) into (125), one finds

K1 ¼
ia

2e0Y44

X4
j¼1

Y4jP1
2j

 !
; K2 ¼

ia2ImM4

4e0jtY44
q12 ð126Þ

Substituting (126) into (110), one can obtain the final expression of K0 fð Þ for the case of a crack. The result
is

K0 fð Þ ¼ � 1
2
aP1

2 f�1 þ i4
a
2Y44

X4
j¼1

Y4jP1
2j

 !
f�1 þ i4

a2ImM4

4jtY44
q12 f�2 ð127Þ

With K0 fð Þ, the complex potential f0 zð Þ can be found from (94).

Fig. 6. The variation of the hoop stress with h when D1
2 is solely applied.

Fig. 5. The variation of the hoop electric displacement with h when D1
2 is solely applied (a=b ¼ 100).
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4.2. The field intensity factor

Define

K ¼ kII; kI; kIII; kDð Þt

Then, at the right crack tip (x1 ¼ a), the field intensity factor vector K can be expressed as

K að Þ ¼
ffiffiffiffiffiffi
2p

p
lim
z!a

zð � aÞ
1
2/;1 zð Þ ð128Þ

In f-plane, by using (57), (128) can be rewritten as

Fig. 7. The variation of the hoop stress with h when q12 is solely applied.

Fig. 8. The variation of the hoop electric displacement with h when q12 is solely applied.
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K að Þ ¼
ffiffiffi
p
a

r
lim
f!1

/ fð Þ=df ð129Þ

Substituting (90) into (129), and noting from (72) that Bd þ dc1 is real, one has

K að Þ ¼ 2
ffiffiffi
p
a

r
Bd½ þ dc1
 þ 2

ffiffiffi
p
a

r
Relim

f!1
K0 fð Þ=df ð130Þ

Inserting (120) into (123), one can obtain the final solution of field intensity factor vector as

K að Þ ¼ KT að Þ þ Kr að Þ þ Kr
D að Þ þ KT

D að Þ ð131Þ

where

KT að Þ ¼ 2
ffiffiffi
p
a

r
Bd½ þ dc1
 ð132Þ

Kr að Þ ¼
ffiffiffiffiffiffi
pa

p
P1
2 ð133Þ

Kr
D að Þ ¼ �i4

ffiffiffiffiffiffi
pa

p 1

Y44

X4
j¼1
Re Y4j
� �

P1
2j ð134Þ

KT
D að Þ ¼ �i4

ffiffiffiffiffiffi
pa

p ImM4

jtY44
aq12 ð135Þ

Observing (131), one can find that K að Þ consists of the four parts, in which KT að Þ and Kr að Þ stand for the
contribution of the applied heat loads and mechanical-electric loads to all the field singularities, respec-
tively; while Kr

D að Þ results from the coupling effect between mechanical and electrical fields, and KT
D að Þ the

coupling effect between thermal and electrical fields. Thus, Kr
D að Þ and KTD að Þ represent the contribution of

the applied mechanical–electrical and heat loads to the singularity of electric displacement field, respec-
tively.
However, if the crack is assumed to be impermeable, i.e., e0 is assumed to be zero, one can find from

(110) that the above coupling terms Kr
D að Þ and KTD að Þ are omitted. Obviously this will lead to erroneous

results.
Below let us examine several special cases. When there is no heat load at infinity, one can obtain from

(131)–(135) that

Kj að Þ ¼
ffiffiffiffiffiffi
pa

p
r1
2j ; jð ¼ 1; 2; 3Þ; K4 að Þ ¼ �

ffiffiffiffiffiffi
pa

p 1

Y44

X3
j¼1
Re Y4j
� �

r1
2j ð136Þ

which is consistent with the result of Gao and Wang (2000).When the electric loads are solely applied at
infinity, (129) leads to

K að Þ ¼ 0 ð137Þ

When the heat flow is solely applied at infinity, (131) becomes

K að Þ ¼ KT að Þ þ KT
D að Þ ð138Þ

(138) shows that in this case, both the stress and electric field are singular.
For a purely-elastic anisotropic material subjected only to the remote heat flow, neglecting the terms

related to mechanical–electrical loads and noting M4 ¼ 0, one has from (131) that

2682 C.-F. Gao et al. / International Journal of Solids and Structures 39 (2002) 2665–2685



K að Þ ¼ 2
ffiffiffi
p
a

r
Bd½ þ dc1
 ð139Þ

where B degenerates into a 3� 3 matrix, d a 3� 1 vector. It can be confirmed that (139) is consistent with
the solution of Tarn and Wang (1993). Recently, this solution is also obtained by Chao and Shen (1998)
who studied thermal stresses in a generally anisotropic body with an elliptic inclusion. However, it should
be noted that there are some typing errors in Eqs. (64) and (65) of Chao and Shen (1998), i.e. the positive
sign in these equations should be changed into the negative sign.

4.3. The electric field inside the crack

From (111), one has

fh zð Þ ¼ a01
R0
zþ a02

R20
z2 � 2a02 ð140Þ

Substituting (140) into (45)2 and (44)1 gives

D02 x1ð Þ ¼ 4e0
a
Im a01
� �

þ 16e0
a2
Im a02
� �

x1 ð141Þ

E01 x1ð Þ ¼ � 4
a
Re a01
� �

� 16
a2
Re a02
� �

x1 ð142Þ

Inserting (123) and (124) into (141) and (142) leads to

D02 x1ð Þ ¼ D1
2 þ 1

Y44

X3
j¼1
Re Y4j
� �

r1
2j þ

ImM4

jtY44
q12 x1 ð143Þ

E01 x1ð Þ ¼ E1
1 þ

X3
j¼1
Im Y4j
� �

r1
2j �

ReM4

jt
q12 x1 ð144Þ

If the mechanical loads are solely applied at infinity, (143) and (144) becomes

D02 ¼ D1
2 þ 1

Y44

X3
j¼1
Re Y4j
� �

r1
2j ð145Þ

E01 ¼ E1
1 þ

X3
j¼1
Im Y4j
� �

r1
2j ð146Þ

Comparing the above results concerning crack with those in Gao and Wang (2001), it can be found that
they are consistent, though two different approaches are used. This implies that the Parton assumption is
also valid to the mathematical crack problem in thermopiezoelectric solid. Thus, the Parton assumption can
be directly used to solve a number of complicated crack problems in thermopiezoelectric materials.

5. Conclusions

This paper presents exact solutions for an infinite thermopiezoelectric medium with an insulated elliptic
hole or a crack under combined heat–mechanical–electrical loadings at infinity. Even though there are the
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mathematical complexities inherent to the considered problem, the present analysis is very explicit. Espe-
cially when the hole degenerates into a crack, more concise results are obtained. Since these results are not
only concise, but also exact, they can be used as the fundamental solutions to prove the correctness of other
solutions for more complicated crack problems of thermopiezoelectric media. For example, this work
shows that for the crack problem in thermopiezoelectric solids, the solutions based on the Parton as-
sumption is right. This indicates that one can exactly and effectively solve the linear crack problem in
piezoelectric media by the direct use of the Parton assumption.
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